注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

首津

喜欢这山,这水

 
 
 

日志

 
 

四年级数学下册教案18:数学广角(植树问题)  

2012-05-08 09:41:21|  分类: 小学教案 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

教学目标

1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题 的规律。

2.使学生经历和体验复杂问题简单化的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学过程

一、创设情境 生成问题

母亲节刚过,我们马上又要迎来一个快乐的节日──“?一儿童节,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

大家知道312日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究植树问题。(板书课题:植树问题)

二、探索交流 解决问题

发现两端要种的规律

1.创设情境,提出问题。

课件出示图片。

介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

理解题意。

a. 指名读题,从题中你了解到了哪些信息?

b. 理解两端是什么意思?

指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

算一算,一共需要多少棵树苗?

反馈答案。

方法一:1000÷5=200(棵)

方法二:1000÷5=200(棵)  200 +2=202(棵)

方法三:1000÷5=200(棵)  200 +1=201(棵)

师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

2. 简单验证,发现规律。

画图实际种一种。

课件演示:我们用这条线段表示这条绿化带。两端要种,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……

师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

画一画,简单验证,发现规律。

a. 先种15,还是每隔5种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3 4棵)

b. 跟上面一样,再种25看一看,这次你又分了几段,种了几棵?(板书:5 6棵)

c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

(板书: 2 3棵;7 8棵;10 11棵。)

d. 你发现了什么?

小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

(板书:两端要种:棵树=段数+1

应用规律,解决问题。

a. 课件出示:前面例题

问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

1000÷5=200 这里的200指什么?

200 +1=201 为什么还要+1

师:这个秘方好不好?

通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到两端要种求棵树,知道该怎么做了吗?

b. 解决实际问题

运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

问:这道题是不是应用植树问题的规律解决的?

师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种求棵树用段数+1;如果两端不种棵树和段数又会有怎样的关系呢?

 “两端不种的规律

1.猜测两端不种的规律。

猜测结果是:两端不种:棵树=段数-1

师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

2.独立探究,合作交流。

3.展示小组研究成果,发现规律,验证前面的猜测。

小结:同学们太了不起了,通过举简单的例子,自己又发现了两端不种的规律:棵树=段数-1。如果两端不种求棵树,你会做了吗?

4.做一做。

在一条长2000的路的一侧种树,每隔10种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

师:同学们注意看,这道题发生了什么变化?

课件闪烁:将一侧改为两侧

问:两侧种树是什么意思?实际要种几行树 ?会做吗?赶紧做一做。

小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是两端要种还是两端不种

1 一根木头长8,每2锯一段。一共要锯几次?(学生独立完成。)

8÷2=4(段)

4—1=3(次)

问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

三、巩固应用 内化提高

2 我们身边类似的数学问题。

看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

这一列还是4个同学,如果每相邻两个同学之间的距离是2,从第一个同学到最后一个同学的距离是多少米呢?

3.在一条路的一侧种树,每隔6种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

四、回顾整理 反思提升

通过今天的学习,你有哪些收获?

师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

  评论这张
 
阅读(175)| 评论(1)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017